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Multistability – spontaneous switches of perception
when viewing a stimulus compatible with several
percepts – is often characterized by the distribution of
durations of dominance phases. For continuous viewing
conditions, these distributions are similar for various
multistable displays and share two characteristic
features: a Gamma-like distribution shape and
dependence of dominance durations on the perceptual
history. Both properties depend on a balance between
self-adaptation (also conceptualized as a weakening
stability prior) and noise. Prior experimental work and
simulations that systematically manipulated displays
showed that faster self-adaptation leads to a more
“normal-like” distribution and, typically, to more regular
dominance durations. We used a leaky integrator
approach to estimate accumulated differences in
self-adaptation between competing representations and
used it as a predictor when fitting two parameters of a
Gamma distribution independently. We confirmed
earlier work showing that larger differences in
self-adaptation led to a more “normal-like” distribution
suggesting similar mechanisms that rely on the balance
between self-adaptation and noise. However, these
larger differences led to less regular dominance phases
suggesting that longer times required for recovery from
adaptation give noise more chances to induce a
spontaneous switch. Our results also remind us that
individual dominance phases are not “independent and
identically distributed.”

Introduction
Perception is constructed from intrinsically noisy

and ambiguous sensory information, so our brain
uses prior knowledge about the world to “fill in the
gaps” and resolve ambiguity (Carbon, 2014). In some
cases, sensory information is compatible with different,
similarly probable perceptual interpretations leading
to so-called multistability, meaning our perception
spontaneously alternates despite a constant physical
stimulus (Tong, Meng, & Blake, 2006). Examples of
multistable stimuli can be seen in Figures 1A–C, and
there exist many stimuli beyond the visual domain,
including auditory (Denham & Winkler, 2006), tactile
(Liaci, Bach, Van Elst, Heinrich, & Kornmeier, 2016),
and even olfactory multistable stimuli (W. Zhou
& Chen, 2009). Multistable perception is also not
uniquely human and has been demonstrated in primates
(Leopold & Logothetis, 1996), pigeons (Vetter, Haynes,
& Pfaff, 2000), and mice (Zhang, Wen, Zhang, She,
Wu et al., 2012). Due to its universality, multistable
perception is a particularly interesting subject of
research as it advances our knowledge about the
architecture of our perceptual system and perceptual
decision making (Cao, Pastukhov, Aleshim, Mattia, &
Braun, 2021).

When multistable displays are presented
continuously, their perception is often characterized by
a distribution of dominance duration times or, inversely,
by the alternation rate. These have two properties that
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Figure 1. Bistable displays and typical distribution of dominance
phase durations. (A) The kinetic-depth effect: a 2D onscreen
motion produces an alternating perception of a rotating object.
(B) Monocular rivalry generates alternating dominance of two
orthogonal gratings (use red-green glasses to experience
binocular rivalry). (C) A Necker cube can be perceived in two
ways with different orientations. (D) A typical distribution of
dominance phases for a participant who viewed kinetic-depth
effect displays. Data is overlaid by a fitted Gamma distribution.

are of interest here: the overall shape of the distribution
and their dependence on the perceptual history. With
respect to the former, even though duration times
vary greatly among participants (Brascamp, Becker,
& Hambrick, 2018; Pastukhov, Kastrup, Abs, &
Carbon, 2019), the shape of individual distributions
is remarkably similar (Cao, Pastukhov, Maurizio,
& Braun, 2016), see Figure 1D. This consistency is
viewed as a “hallmark” of multistable perception
(Leopold & Logothetis, 1999) and is often used as
a first check when characterizing a new multistable
stimulus (van Ee, 2005). There is a debate about which
theoretical distribution fits the empirical dominance
phase durations/alternation rate the best, with many
suggestions that include Gamma, exponential, Weibull,
normal, Capocelli-Ricciardi, beta rate, exponentially
modified Gaussian, and log-normal distributions
(Brascamp, van Ee, Pestman, & van den Berg, 2005;
Cogan, 1973; de Marco, Penengo, & Trabucco, 1977;
Huguet, Rinzel, & Hupé, 2014; Lehky, 1995; Levelt,
1967; Zhou, Gao, White, Yao, & Merk, 2004). Among
those, the Gamma distribution is considered to be the
“canonical” distribution for fitting the data, which
is described by two parameters, the shape and scale
parameters (Borsellino, De Marco, Allazetta, Rinesi,
& Bartolini, 1972; Levelt, 1967; Murata, Matsui,
Miyauchi, Kakita, & Yanagida, 2003). Its initial

appeal was that it allows conceptualizing perceptual
alternations as a Poisson process so that they occur after
α discrete independent stochastic events (Borsellino
et al., 1972; Levelt, 1967). This conceptualization
predicts that the shape parameter of the Gamma
distribution corresponds to that number of discrete
independent stochastic events and therefore must be an
integer number (Murata et al., 2003), but the evidence
for this is not conclusive.

Although the conceptualization of alternations
as a Poisson process assumes independence of
events, dominance phase durations exhibit a subtle
but consistent dependence of their duration on
the perceptual history. This serial dependence is
particularly evident when an unambiguous stimulus
precedes a bistable one. Here, an artificially prolonged
dominance of a percept leads to longer dominance of
the alternative percept during a consequent continuous
presentation (Blake, Westendorf, & Fox, 1990; Wolfe,
1984). Although less pronounced, the same serial
dependence is observed when fully ambiguous bistable
displays are viewed continuously. A common approach
to quantify this dependence is via an autocorrelation
of dominance phase durations with different lags
(Borsellino et al., 1972). Typically, this produces a
small (0.1–0.2) but significant and consistently positive
autocorrelation for lag 1 (van Ee, 2009). In other
words, longer dominance phases for one percept tend
to be followed by similarly long dominance phases
for the complementary percept, and, conversely, short
perceptual dominance phases are typically followed
by similarly short ones. Alternatively, the effect of
the perceptual history can be quantified via a leaky
integrator that accumulates perceptual history for each
state (Pastukhov & Braun, 2011). The latter approach
requires fitting a decay time parameter. However, it is
more robust against return transitions (events when
the same perceptual state dominates again after a brief
mixed phase period) and erroneous key presses and,
therefore, was adopted for the current study.

There are numerous computational models of
multistable perception that reproduce both the
characteristic distribution of dominance phases and
their history-dependence (Cao et al., 2016; Cao et al.,
2021; Kornmeier, Friedel, Wittmann, & Atmanspacher,
2017; Laing & Chow, 2002; Moreno-Bote, Rinzel, &
Rubin, 2007; Noest, van Ee, Nijs, & van Wezel, 2007;
Pastukhov, García-Rodríquez, Haenicke, Guillamon,
Deco et al., 2013; Shpiro, Moreno-Bote, Rubin, &
Rinzel, 2009; Weilnhammer, Stuke, Hesselmann,
Sterzer, & Schmack, 2017). One popular class of
dynamic models assumes that multistability is borne
out as an interplay among cross-inhibition (to ensure
perceptual exclusivity), self-adaptation (gradual
habituation of a dominant state through neural
fatigue), and noise (Laing & Chow, 2002; Moreno-Bote
et al., 2007; Noest et al., 2007; Pastukhov et al.,
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2013). Alternatively, perceptual disambiguation and
ensuing instability of multistable perception can be
conceptualized as inference via hierarchical predictive
coding (Staadt, Philipp, Cremers, Kornmeier, & Jancke,
2020; Weilnhammer et al., 2017). Notably, both classes
of models predict serial dependence due to leaky
accumulation of a dominant state signal. In the former
case, it is assumed to reflect noisy self-adaptation
(van Ee, 2009), whereas in the case of the predictive
coding framework, it corresponds to a weakening
stability prior and an escalation of a prediction error
(Weilnhammer et al., 2017). In the text below, we
will use the terms “accumulated perceptual history”
and “self-adaptation” interchangeably to refer to this
phenomenon of history accumulation without implying
a specific neural mechanism or conceptualization that it
might reflect.

Both classes of models suggest that the shape of
dominance phase durations and their regularity reflect
the balance between the speed of accumulation and the
level of noise. Specifically, the shape of their distribution
can range from an exponential, when alternations are
triggered by noise, to a more normal-like shape (i.e. a
more symmetric distribution with less probability mass
in the rightward tail), when self-adaptation is the main
source of stabilization and destabilization (Pastukhov
et al., 2013). The latter oscillatory regime also leads
to more regular (i.e. predictable) dominance phase

durations, whereas the noise-driven regime reduces
autocorrelation. These predictions are mirrored by
experimental evidence that shows, for example, that
higher contrast in binocular rivalry (presumed to
increase absolute stimulus strength and, therefore, to
increase the effective speed of self-adaptation) leads
to both a more normal-like shaped distribution (i.e.
Gamma distributions with higher shape parameter
values) and more regular dominance phase durations
(van Ee, 2009). Conversely, an intermittent presentation
that allows for recovery from self-adaptation leads
to a more erratic noise-driven perception with
exponential-like distributions (i.e. Gamma distributions
with shape parameter values close to 1; Brascamp,
Pearson, Blake, & van den Berg, 2009).

The prior work listed above hints at a relationship
between the overall distribution shape and the regularity
of dominance phases. However, in all cases, the balance
between accumulation (self-adaptation) and the noise
was fixed for an entire experimental or simulation
run. Here, we sought to confirm and extend these
results to minute dynamic changes in the balance
due to recent perceptual experience, allowing us to
compare different operating regimes naturally occurring
within the time series. Our approach was two-fold.
First, we fitted the Gamma distribution using linear
models for each parameter. These models included
accumulated perceptual history as a predictor, allowing

Figure 2. The same change of the mean of the Gamma distribution can come about as various combinations of changes to its shape
and scale parameters. (A) Isolines indicate parameters’ combinations that produce the same mean. (B) Three example distributions
that have the same higher mean as compared to the original (dashed line). Lower values of the shape parameter lead to more
exponential-like distributions, whereas higher values lead to more normal-like distributions.
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them to change and adjust the overall distribution
shape independently. This extends prior work that used
accumulated perceptual history to model changes in
the mean of the distribution (Borsellino et al., 1972;
Pastukhov & Braun, 2011; van Ee, 2009), as the latter
approach is limited as it does not inform on how a
particular change of the mean originates, see Figure 2.
In our case, linear models for both parameters of the
Gamma distribution on the perceptual history allowed
us to characterize its dynamic changes and compare
them to changes due to fixed regimes cited above using
both behavioral data and model simulations. Second, we
computed the regularity (predictability) of dominance
phase durations for different levels of accumulated
perceptual history. This allowed us to compare them
with regularity expected from stationary regimes both
within the study, using contrast-manipulated stimuli as
a benchmark, and with prior work.

Materials and methods
Behavioral data

We used a previously published data set (Pastukhov
et al., 2013) and previously unpublished data (see the
Table 1 and the description below). The first data set,
reported in Pastukhov et al. (2013), contains results
for binocular rivalry (BR), kinetic-depth effect (KDE),
and Necker cube (NC) displays measured in an adult
population. For the measurement method details,
please refer to Pastukhov et al. (2013).

For the new data set, we used a binocular rivalry
display and a procedure similar to that used in
Pastukhov et al. (2013) but with five contrast levels
6.25%, 12.5%, 25%, 50%, and 100% (Michelson
contrast, Gamma corrected, presented on Iiyama
Vision Master Pro 454 display, luminance profile was
measured using Konica Minolta LS-110 luminance
meter). Binocular rivalry stimulus consisted of two
orthogonally oriented sine wave gratings (radius 0.9
degrees, spatial frequency 2 cycles/degrees, one was

tilted by 45 degrees clockwise and another by 45 degrees
counter-clockwise). Participants viewed the display
through a custom-made mirror stereoscope (75 cm,
about 2.46 feet, eye-screen distance) and reported on
the eye dominance using a keyboard, continuously
pressing left or right when, correspondingly, the
counterclockwise- or clockwise-oriented grating
was dominant. The lack of key presses indicated
mixed/transition phases. Each presentation lasted for
2 minutes. An experimental session consisted of 10
blocks so that each contrast condition was repeated
twice. The order was randomized so that the five
contrast conditions were shown in the random order
and then again in the reverse order.

The data were collected at Otto von Guericke
University Magdeburg. Six participants took part in
the experiment. All participants signed the informed
consent prior to the experimental session and received
monetary compensation. They had normal or
corrected-to-normal vision. All procedures were in
accordance with the national ethical standards on
human experimentation and with the Declaration of
Helsinki of 1975, as revised in 2008, and were approved
by the medical ethics board of the Otto-von-Guericke
Universität, Magdeburg: “Ethikkommission der
Otto-von-Guericke-Universität an der Medizinischen
Fakultät.”

Simulated data

We generated simulated data using a custom
implementation of a spiking neural model of bistability
(Laing & Chow, 2002) based on the code provided by
Stepan Aleshin and Jochen Braun from the Cognitive
Biology group at Otto von Guericke University
Magdeburg. The model was fitted to match the time
series for each participant and display from the first data
set (Pastukhov et al., 2013). We used a genetic algorithm
(Scrucca, 2013) with the Kolmogorov-Smirnov test as
a fitness function to match distributions of dominance
phases for the experimental and the simulated data
as closely as possible. Note that the fitness function

Source Data set name Display Contrast (BR only) Number of participants Number of dominance phases

#1 (Pastukhov et al., 2013) BR BR 50% 8 6698
KDE KDE – 11 43,456
NC NC – 5 3940

#2 New data Contrast BR 6.25% 6 930
12.5% 980
25% 1000
50% 1258
100% 1296
Total number of dominance phases 59,558

Table 1. Summary of data sets used in the present study. BR = binocular rivalry; KDE = kinetic depth effect display; NC = Necker cube.
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Figure 3. Example distributions of dominance phase durations for the experimental (upward) and matching simulated (downward)
data for four participants. We picked four participants based on the Kolmogorov-Smirnov test p value from best-matched (BR, vb) to
worst-matched (KD, jn) with two intermediate cases (at the second and third quartiles). The title above each plot shows the display,
participant code, Kolmogorov-Smirnov test statistics, and the respective p value.

characterized only the overall shape of the distribution
and did not include any explicit measure for the history
dependence. For the genetic algorithm, the population
size was 50, and the number of iterations was 100.
After the final iteration, we used parameters of the
best-fitting model to generate a time series with 1100
clear percepts, but the first 100 percepts were discarded
to account for the initial “burn-in” period of the model,
see Laing and Chow (2002). See Figure 3 for examples
of simulated data.

Cumulative perceptual history

An accumulation of perceptual dominance history
for each state was estimated via a leaky integrator
with an exponential kernel (Pastukhov & Braun,
2011). Specifically, it was computed as a homogenous
first-order process:

dhi
dt

= 1
τ
(−hi + Si (t)) (1)

where τ is the time constant, hi and Si(t) are,
respectively, cumulative history and strength of a

perceptual state i at time t. The latter was defined as:

Si (t) =
{ 1 i f state i is dominant

0 i f state i is suppressed
Smixed f or a mixed or transition phase

(2)

so that 0 ≤ Smixed ≤ 1. In the study, we fixed Smixed = 0.5
based on prior work (Pastukhov & Braun, 2011).

As we assumed a constant strength throughout each
period, the solution is:

hi (t + �t) = Si + (hi (t) − Si) · e− �t
τ (3)

The initial state of cumulative history for both states
was assumed to be zero (hi(0) = 0), whereas the time
constant τ was fitted (see below).

For bistable stimuli used in the current study, there
are two perceptual states and two corresponding
cumulative history variables. For the models below, we
combined these two variables as:

�h (t, τ ) = hsuppressed (t, τ ) − hdominant (t, τ ) (4)

where hdominant and hsuppressed are cumulative history
values for currently dominant and suppressed percepts.
For example, for binocular rivalry displays, if a right
eye is currently dominant then hdominant = hright and
hsuppressed = hleft.
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Statistical models

The data from Pastukhov et al. (2013), the
contrast-manipulation data, and simulated data were
fitted using a bistablehistory package (Pastukhov, 2022).
We used identical models for both parameters of the
Gamma distribution. Therefore, model descriptions
below are for just one parameter (shape, κ).

The following model is the default model of the
bistablehistory package. In the model below, i is the
row index within the data table. Note that although
cumulative history was computed using the entire
time series, Durationi included only clear dominant
states.

Durationi ∼ Gamma (ki, θi)
log (ki) = αPi + βHi · H (Ti, τi ) + βT · log (Ti)
aPi ∼ Normal (log (3) , 5)
log (τi) = τpop + τPi
τpop ∼ Normal (log (1) , 0.15)
τPi ∼ Normal (0, στ )
στ ∼ Exponential (10)
βHi = βH + βHPi
βH ∼ Normal (0, 1)
βHPi

∼ Normal
(
0, σβH

)
σβH ∼ Exponential (1)
βT ∼ Normal (0, 1)

We used independent intercept terms for each
participant (αPi) as prior work shows high variability
between individual observers (Brascamp, Qian,
Hambrick, & Becker, 2019; Cao et al., 2016), which
were weakly regularized by a prior centered at 3 seconds
(it is coded as log(3) due to the log link function). Each
participant was assigned an individual value for both
the time constant of cumulative history (τ i) and the
slope term for the effect of cumulative history (βHi)
via a pooled multilevel approach. We used the log link
function to ensure that τ i is strictly positive and a
strongly regularizing prior for both the population-level
τ pop and variability of individual participants. We
used a neutral, weakly regularizing prior for the
population-level effect of cumulative history βH and
strongly regularizing prior for variability of individual
observers. The model included an effect of time via
log (Ti) to account for a slow overall trend within each
run (Mamassian & Goutcher, 2005). We used a neutral
weakly regularizing prior for βT. The code for the model
is available online as part of the bistablehistory package.
The same model was used for fitting KDE display data
from Pastukhov et al. (2013) but with a stronger and
more conservative prior τpop ∼ Normal (log(0.5), 0.3)
as the default prior led to frequent divergent
transitions.

The same model was used for fitting data for the
BR stimulus with modulated contrast. It included an

additional term for the log contrast in the linear model:
log (ki) = αPi + βHi · H (Ti, τi) + βT · log (Ti) +

βC · log(Ci)
βC ∼ Normal (0, 1)

where Ci was the stimulus log contrast.

Reported statistics

We characterized individual model terms using the
samples from the posterior distribution. For each term,
we computed the mean and an 89% credible interval, a
range that contains 89% of the probability mass based
on values from the sampled posterior distribution (CI –
credible interval, also called compatibility interval). The
choice of CI is arbitrary and, therefore, we chose to use
an 89% CI because 89 is a prime number.

All models use the log link function, therefore,
reported values correspond to a multiplicative change
in the outcome variable. For example, βH corresponds
to a 100 × βH% change in parameter value (either shape
or scale) when cumulative history changes from 0 to 1.
Similarly, βT corresponds to a 100 × βT% change in
parameter value for a one unit increase in log time. βC
corresponds to a 100 × βC% change in parameter value
for a one unit increase in contrast.

Software

The analysis and modeling were performed in
R 4.1.2 (R Core Team, 2022) using the Tidyverse
collection of packages (Wickham, Averick, Bryan,
Chang, McGowan et al., 2019). We fitted the data using
the bistablehistory package (Pastukhov, 2022). The
spiking neural model of bistability was implemented
using Rcpp (Eddelbuettel & François, 2011). We used
the GA package (Scrucca, 2013) for genetic algorithm
optimization.

Open practices statement

Behavioral data is available via the bistablehistory
package (Pastukhov, 2022). Simulated data, the model
code, scripts for fitting the data and for the analysis, as
well as sampled models are available under Creative
Commons Attribution 4.0 International Public License
at https://osf.io/js3wv.

Results
As described in the Introduction, the purpose of

the study was to investigate (1) how the perceptual
history influences the overall shape of the distribution
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Figure 4. Estimates for accumulated perceptual history for three displays (Pastukhov & Braun, 2011). (A) Posterior distributions of
accumulated history time constant. (B) Correlation between predicted and observed dominance phase durations for each participant
(sorted by the correlation strength), mean, and 89% credible interval.

of dominance phase durations and (2) how different
levels of accumulated perceptual history alter the
regularity (predictability) of individual dominance
phases. We tackled these two questions separately by
looking at corresponding changes in both behavioral
and simulated data.

Changes to the overall shape of the distribution

Three perceptual displays: Behavioral data
The first data set we used contained measurements

of three different bistable displays (Pastukhov & Braun,
2011). In Pastukhov and Braun (2011), a cumulative
history time constant τ was fitted by maximizing
Pearson’s correlation between an estimate of the
accumulated perceptual history and the duration of the
following dominance phase. This approach is equivalent
to parameterization of the Gamma distribution via
mean and variance with a linear model that computes

a normalized and centered mean of the distribution.
Here, we modified the loss function to accommodate
for fitting both parameters of the Gamma distribution
(shape and scale) to minimize the residual difference
between the unscaled mean of the distribution and the
following dominance phase duration (i.e. to maximize
the strength of the correlation between predicted
and observed durations). These two parametrizations
produced comparable estimates for both an optimal
cumulative time constant τ (Figure 4A) and the
correlation between predicted and observed dominance
durations (Figure 4B). In both cases, the correlation
strength varied greatly between participants with a
good agreement on the relative correlation strength
between the studies (see Figure 3 in Pastukhov &
Braun, 2011). Note that a quantitative comparison
of correlation strength to Pastukhov and Braun
(2011) is complicated but the fact that although the
current approach used more parameters, it also used
regularization via adaptive priors that both reduced
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Figure 5. Posterior distributions for main effects of accumulated perceptual history and time for three displays (Pastukhov & Braun,
2011). (A) A joint posterior distribution for the effect of cumulative history (βH) for shape and scale parameters. (B) Marginal
posterior distributions for effects of cumulative history (βH) and (log scaled) time (βT). See Reported StatisticsMethods section for
details on units.

effective degrees of freedom of the model and made
estimates more conservative.

With respect to the effect of the accumulated history
on the distribution, we observed a clear and positive
effect of cumulative history on the shape parameter
(Figure 5). For all three displays, higher levels of
accumulated perceptual history (i.e. a larger difference
in levels of self-adaptation) increased the shape
parameter leading to a more normal-like distribution. If
larger differences in estimated accumulated perceptual
history imply a shift of balance in favor of perceptual
adaptation, these results are compatible with those
listed in the Introduction. Namely, both simulation
(Pastukhov et al., 2013) and behavioral (van Ee,
2009) studies show a similar change when balanced
was shifted in favor of adaptation for the entire run.
In contrast, we found neither a consistent effect of
cumulative history on the scale parameter nor a
consistent effect of (log) onset time. The latter lack of
consistency is likely due to stimulus-specific speeding
up and slowing down throughout an experimental run
(Brown, 1955; Lehky, 1995; Suzuki & Grabowecky,
2007).

Contrast data set
Next, we analyzed data for a binocular rivalry

display with different contrast levels ranging from
6.5% to 100%. Consistent with prior work (Brascamp,
van Ee, Noest, Jacobs, & van den Berg, 2006; van
Ee, 2009), we observed faster switching (shorter
dominance durations; Figure 6A) as well as a stronger
correlation between predicted and observed dominance
durations (i.e. stronger dependence on prior perceptual
history; Figure 6B) for higher contrast levels (more

regular dominance durations). To quantify the latter,
we fitted a linear regression model with contrast as a
predictor and correlation strength as an outcome (ρ
= α + βcontrast · log(Contrast) + ε) for each posterior
sample, obtaining a posterior distribution for the slope
term: βcontrast = 0.04 [0.03..0.05].

Concerning the effect of individual predictors on
the parameters of the Gamma distribution (Figure
6C), we again found that higher values for accumulated
perceptual history (larger differences in self-adaptation
level) result in a significant increase in the shape
parameter. Contrast also had a strong and positive
effect on the shape parameter. However, as for the
data set above, the effects of other parameters were
mixed, with both accumulated history and contrast
having a weak negative effect on the scale parameter.
In short, results for the two data sets were qualitatively
and quantitatively similar showing a shift toward a
more “normal-like” distribution shape for higher levels
of accumulated perceptual history (larger differences
in self-adaptation level and more regular dominance
phases).

Three perceptual displays: Simulated data
Finally, we performed the analysis on data simulated

via a spiking neural model of bistability (Laing &
Chow, 2002). We chose that particular model because
it is frequently used as a starting (Noest et al., 2007)
and reference point (Cao et al., 2021) for more complex
models. Thus, its value was in investigating how
well even such a basic model can reproduce changes
in the distribution of dominance durations due to
perceptual experience. To make this test more stringent,
we deliberately excluded from optimization of any
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Figure 6. Effect of contrast in binocular rivalry stimulus on dominance phase durations. (A) Average observed and predicted durations
of dominance phases, log scale for both axes. Circles depict the mean values, whereas bars and shaded areas depict the first and third
quantiles for each participant. (B) Average group correlation between observed and predicted dominance durations as a function of
contrast. Error bars depict 89% credible intervals. Line and stripe show mean and 89% credible interval for the linear regression with
correlation strength as an outcome variable and contrast as a predictor variable. (C) Marginal posterior distributions for effects of
cumulative history (βH), log contrast (βC), and log time (βT) on shape and scale parameters of the distribution.

parameters related to history dependence. Instead, we
used a genetic algorithm (Scrucca, 2013) to match the
overall distribution of dominance phase durations as
closely as possible using the Kolmogorov-Smirnov test
as a fitness function (see examples in Figure 3). Thus,
any effect of perceptual history on parameters of the
Gamma distribution would not reflect model tuning.
Nonetheless, we found that the simulated time series
exhibited the history-dependence, although estimates
of the cumulative history time constant were lower
and less certain than those for the real observers:
0.93 (0.71..1.18; mean and 89% credible interval) for
simulated data versus 0.8 (0.68..0.94) for behavioral
data for BR, 0.81 (0.63..1.02) versus 0.76 (0.64..0.91)
for KD, and 0.91 (0.71..1.14) versus 0.84 (0.68..1.02) for
NC.

We used the same fitting approach as for the
behavioral data but excluded the (log) onset time
predictor as the model does not generate any

long-term trend (Laing & Chow, 2002). The results
are summarized in Figure 7. Here, we observed a very
consistent strong positive effect for the shape parameter
(matching the behavioral data) but an equally strong
and consistent negative effect for the scale parameter.
The latter difference is likely to stem from the lack
of a larger timescale trend typical for the behavioral
data, as any increase in shape parameter must be offset
by an opposite decrease in scale to keep the average
dominance duration constant (see Figure 2). Therefore,
it is likely that a similar effect on shape parameters
in behavioral data was masked by the slow drift, even
when partially accounted for by (log) onset time as a
predictor.

To summarize this section, results for simulated time
series were in qualitative and quantitative agreement
with behavioral data showing a consistent increase of
the shape parameter (more normal-like distribution)
for higher levels of accumulated perceptual history
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Figure 7. The posterior distribution for cumulative history term for simulated versus real data. (A) Joint posterior distribution for the
effect of cumulative history (βH) for shape and scale parameters. Filled – simulated data, open – real data. (B) Marginal posterior
distributions for effect of cumulative history (βH) for each parameter. Simulated data – positive direction, real data – negative
direction.

(larger differences in self-adaptation levels). Our results
for history-driven changes are in good agreement with
prior work that fixed the dynamic regime for the entire
experimental or simulation run, suggesting similar
underlying changes in both cases.

Regularity of dominance phases as a function of
perceptual history

Our second question was whether dynamic changes
in the balance between neural noise and self-adaptation
consistently affect the regularity of dominance
phase durations. To this end, we computed Pearson’s
correlation between observed and predicted dominance
durations for different subsets of dominance phases
based on the estimated accumulated perceptual history.
Specifically, we used a sliding window that included
50% of dominance phases and moved it in nine
steps from 0.25 (lower half) to 0.75 (upper half) and
computed Pearson’s correlation between observed
and predicted dominance duration (similar to Figure
4B). Then, we fitted a linear regression separately
for each display (BR, KD, and NC) and data source
(behavioral and simulated) to estimate the dependence.
For behavioral data, we observed a strong dependence
with higher levels of accumulated perceptual history
(larger differences in perceptual adaptation) associated
with lower correlation (i.e. less predictable dominance
phases; Figure 8, top row) and vice versa. The
relationship was qualitatively similar but much weaker
for the simulated data (bottom row in Figure 8).

Why would a larger difference in self-adaptation
levels, the deterministic component of a typical
computation model, lead to less regular dominance
phases? The answer could lie in the duration of these

phases. As established by prior work (Pastukhov &
Braun, 2011) and confirmed by results in the section
above, higher levels of accumulated perceptual history
(larger difference in adaptation levels) lead to longer
dominance phase durations. This, in turn, gives more
opportunities for the noise to play its role and induces a
perceptual switch. Conversely, comparable adaptation
levels mean that the self-adaptation of a dominant
state may quickly reach the switching threshold making
them more regular. This idea is supported by the
contrast data set (see Figure 6). Here, higher contrast is
associated with stronger self-adaptation (hence, states
reach the switching threshold faster), shorter dominance
phases, and more regular dominance phases.

Note that it is the accumulated perceptual history
(difference between adaptation levels) prior to the phase
rather than the duration of the dominance phase itself
that is predictive. In addition, note that the regularity
of brief dominance phases could be even higher as
they are more affected by variance in response times
(Pastukhov, Vonau, & Braun, 2012) and, therefore, are
noisier relative to the longer durations. It would be
interesting to investigate such relative regularity using a
better method for timing switches, such as an external
clock (Pastukhov et al., 2012) or eye movements
(Aleshin, Ziman, Kovács, & Braun., 2019).

At the same time, results that rely on spontaneous
variability in percept durations might need to be
interpreted differently than results that rely on
experimentally varied variability. Our assumptions,
consistent with those used in most models, is that
self-adaptation speed and level of internal noise
remain constant throughout the block. However, it
is possible that both are modulated throughout the
block by fatigue or (in)attention (Paffen & Alais, 2011;
Pastukhov & Braun, 2007). In this case, duration
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Figure 8. Correlation between predicted and observed dominance phase durations for dominance phases grouped based on the
cumulative history difference. Data was split into nine overlapping quantiles of 50% width that moved at nine steps from centered at
0.25 (lower half) to 0.75 (upper half). Circles and faint stripes correspond to mean and 89% CI for posterior correlation between
predicted and observed dominance phases. Straight lines and strong stripes, as well as in-plot text, show mean and 89% CI for fitted
linear regression.

of dominance phases may reflect the current speed
of self-adaptation build-up and, independently, the
regularity of dominance phases would depend on the
current level of noise. In turn, this would mean that
although a cumulative history measure, computed
with the assumption of stable self-adaptation and
noise, would be correlated with the duration of
following dominance phase durations, it would not
reflect the actual adaptation state and should not be
interpreted causally. Therefore, further research that
would combine both spontaneous and experimentally
controlled variations in both self-adaptation and noise
is needed to disentangle these effects.

To summarize this section, we found that higher
levels of accumulated perceptual history (larger
difference in self-adaptation states) led to less regular
dominance phase durations, likely due to longer phase
durations that allow for a stronger influence of noise.
However, the exact relationship between accumulated
perceptual history and regularity of dominance phase
durations may depend on fluctuation of the adaptation
process and the level of internal noise.

Discussion
The aim of this study was to examine how

minor changes in the balance between noise and
self-adaptation due to the perceptual history influences
the distribution of the following dominance phase
durations. Specifically, we were interested in (1) changes
to the overall distribution shape and (2) regularity
of dominance phases. For the overall distribution
shape, we observed a consistent change for the shape
parameter of the Gamma distribution, meaning that
higher levels of accumulated perceptual history (larger
difference in self-adaptation levels) led to a more
normal-like distribution. This was observed both for all
stimuli and experimental conditions in behavioral data
and for simulations generated by a spiking model of
bistability (Laing & Chow, 2002). Concerning the effect
of perceptual history on the regularity of dominance
phases, we found that its higher levels (larger differences
in self-adaptation levels) made dominance phases less
regular.
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The reported pattern was consistent for three
multistable displays that are thought to rely on different
underlying neural networks (Brascamp et al., 2018;
Brascamp et al., 2019; Pastukhov et al., 2019). Thus,
they are likely to generalize to other multistable
stimuli including other modalities (Denham, Bendixen,
Mill, Tóth, Wennekers, et al., 2012), and can serve as
an additional check on whether a visual experience
similar to multistability taps into similar neural
mechanisms. For example, there exists a curious case
of Kanizsa’s anomalous transparency figure that
produces bistable perception with times series that
are overall similar to those of other bistable displays,
yet, it differs substantially in its serial dependencies
during continuous as well as intermittent presentations
(Kogo, Hermans, Stuer, van Ee, & Wagemans, 2015). In
cases like these, the two additional characteristics of
multistability – consistent history-dependent changes in
distribution shape and dominance durations regularity
– could serve as additional ways to identify reasons for
possible dissociations.

Our results on changes in the distribution shape
are in good agreement with prior work that fixed the
dynamic regime for the entire experimental (Brascamp
et al., 2009; van Ee, 2009) or simulation (Pastukhov
et al., 2013) run. This suggests similar underlying
changes in the balance between self-adaptation and the
noise in both cases and extends them to a dynamic
case. The advantage of our analysis is that it allows
characterizing this dependence and, therefore, changes
in the balance between self-adaptation and the noise
also for stimuli, such as a Necker cube or face-vase
perceptual rivalry, where its explicit manipulation is
problematic. At the same time, the perceptual history
approach might help to differentiate from the case
when changes in dominance time distribution reflect
other sources of instability. For example, increased dot
density and velocity speed up perceptual alternations in
kinetic-depth effect displays (Brouwer & van Ee, 2006).
Although this speed-up looks similar to that caused
by increased contrast in binocular rivalry (van Ee,
2009), it is explained primarily by changes to the scale
parameter of the Gamma distribution alone. This hints
at different reasons for increased switches such as its
decreasing costs (Pastukhov et al., 2012). In cases like
these, information on history-dependent changes within
and stimulus-dependent differences between individual
conditions could help to establish the overlap between
effects.

Highly consistent history-dependent changes
also provide more specific constraints for models of
multistable perception. In prior work, models were
commonly checked for serial dependencies (Laing &
Chow, 2002) and for their ability to accurately reproduce
central moments of the distribution (Cao et al., 2016;
Cao et al., 2021). Our results build on that as they
allow us to characterize dynamic history-dependent

changes and identify specific groups of dominance
phases based on expected levels of self-adaptation. Our
results are strongly linked to the idea of a dynamic
interplay between noise and self-adaptation, as they can
be accounted for even by a relatively simple model built
on this idea (Laing & Chow, 2002). Comparable results
would likely be obtained from the predictive coding
framework that uses the same overlap principles but
a different conceptualization as an interplay between
stability prior and noisy evidence (Weilnhammer et al.,
2017). However, it would be an interesting test for other
conceptualizations, such as the Necker-Zeno Model for
Bistable Perception (Kornmeier et al., 2017), models
based on Bayesian sampling (Moreno-Bote, Knill, &
Pouget, 2011), or attention-based models (Li, Rankin,
Rinzel, Carrasco, & Heeger, 2017).

The fact that larger differences in levels of
self-adaptation (as estimated through the accumulated
perceptual history measure) lead to longer and
more variable dominance phases has interesting
practical implications for research on the causes of
perceptual switches. Switching dynamics include other
influences, most notably top-down attention (Dieter,
Brascamp, Tadin, & Blake, 2016). However, its ability
to exert influence depends on the multistable display
(Meng & Tong, 2004) and its specific configuration
(Brouwer & van Ee, 2006). The larger differences
in the self-adaptation lead to longer recovery times
before the switching threshold is reached. That in turn
might provide a larger window of opportunity for
attention to exert its influence and induce a perceptual
switch. This idea gives interesting testable predictions
for the timing and direction of the visual processing
cascade that resolves perceptual ambiguity (de Jong,
Vansteensel, van Ee, Leijten, Ramsey, et al., 2020),
as well as the closer link between the processing of
exogenous changes and self-adaptation rather than
attention-driven endogenous switches. Future studies
could also explore the effects of accumulated history
on percept durations and predictability in more detail
by using tasks that allow for a more precise control
of adaptation levels and the perceptual noise (Kim,
Grabowecky, & Suzuki, 2006). This could help to
disentangle the effects of accumulated history from
those of the internal noise and self-adaptation levels on
the temporal dynamics of the perceptual alternations.

Finally, our results serve as a reminder that durations
of individual dominance phases for multistable
perception time series are not independent and
identically distributed. Of course, this conclusion is
not perfectly new (Pastukhov & Braun, 2011; van
Ee, 2009), even if initial reports assumed such a
memory-less process (Borsellino et al., 1972; Levelt,
1967). Nonetheless, an average dominance duration or,
inversely, switch rate, often serves as a main measure
of interest, particularly when comparing different
groups of participants (e.g. Díaz-Santos, Mauro, Cao,
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Yazdanbakhsh, Neargarder et al., 2017; Kornmeier
et al., 2017; Ukai, Ando, & Kuze, 2003). As illustrated
in Figure 2, for a skewed distribution the same average
dominance duration may correspond to a different
underlying distribution shape with a different balance
between self-adaptation and the noise (Arani, van Ee,
& van Wezel, 2018; van Loon, Knapen, Scholte, St
John-Saaltink, Donner et al., 2013). Our results suggest
that even if groups are different in their alternation
rate, it is always a promising idea to take a closer
look at the distribution itself (e.g. by looking at its
central moments; Cao et al., 2021), as well as serial
dependencies (Hudak, Gervan, Friedrich, Pastukhov,
Braun et al., 2011). The freely available R package
bistablehistory (Pastukhov, 2022) used in the current
study provides a convenient automatic tool for such
in-depth fitting. It offers information on the time
constants of the self-adaptation process for individual
participants and its effect on individual dominance
phase durations. Such an analysis is particularly
beneficial when comparing observers’ groups (Hudak
et al., 2011). This is the reason for us to encourage the
interested reader to give it a try!

Conclusions
We presented a novel analysis method that fits a

Gamma distribution considering a simultaneously fitted
estimate of cumulative perception history. We used it to
demonstrate two previously unreported features that
were present in all analyzed multistability time series
both for behavioral and simulated data. Both of these
features are linked to an increased prior cumulative
history (larger difference in self-adaptation levels) as
they shifted the shape of the distribution toward a more
normal-like distribution and reduced the regularity
of individual dominance phases, making them less
predictable. Our results together with a freely available
implementation of the analysis method pave way for a
finer analysis of individual dominance phases within
time series. They also remind us that dominance phase
durations in multistable perception are not independent
and identically distributed.

Keywords: multistable perception, bistable perception,
autocorrelation, gamma distribution, serial dependence,
history dependence, binocular rivalry, Necker cube,
kinetic-depth effect, Bayesian statistics
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